ADSP324-141

ソフトウェア・ユーザーズ・マニュアル

目 次

1.	
2. 機能一覧	. 2
3. 供給形態	. 2
4. 供給ファイルの一覧	. 2
5. 関数の一覧	. 3
6. 関数詳細	
ボードの初期化およびライブラリーの初期化	. 4
指定チャネルの A/D 変換	. 5
複数チャネルの A/D 変換	. 6
指定チャネルの A/D 連続変換	. 7
複数チャネルの A/D 連続変換	. 8
A/D変換終了確認	. 9
指定チャネルの D/A 変換	10
複数チャネルの D/A 変換	11
指定チャンネルの D/A 連続変換	12
複数チャンネルの D/A 連続変換	13
D/A変換終了確認	14
A/D+D/A同期動作	15
A/D+D/A同期変換終了確認	16
7. 構造体の説明	17
1) A/D&D/Aボードの定義	17
8. ボード制御ソフトを書く上での注意	18
1) ベクタの使用	18

1. 概要

ADSP324-141サポートソフトウェアは、ADSP324-141を使用するための基本機能を含んだBIOSプログラム(A141BIOS)および、それを用いたサンプルプログラムから構成されています。

A141BIOSは C で記述されており、制御用に使用する上で大きな手掛かりとなると思われます。

2. 機能一覧

A141BIOSには次の機能があります。

ADSP324-141ボードの初期化 ソフトウェア同期のA/D&D/A変換機能 タイマー同期のA/D&D/A変換機能

3. 供給形態

A141BIOSはソースファイルおよび、COFFファイル形式のオブジェクトで供給されます。ユーザープログラムとリンクして使用してください。

4. 供給ファイルの一覧

README. DOC A141BIOS の簡単な説明が書かれています。

A141BIOS. C A141BIOS のソースファイル A141BIOS. H A141BIOS のヘッダファイル

A141BIOS. OBJ A141BIOS のオブジェクトファイル

ADSPTYPE. OBJ A141BIOS 内にて使用

SMPL. BAT SAMPL. C をコンパイルするためのバッチファイル

SAMPL. C A141BIOS を使用したサンプルソフト

SAMPL. LNK SAMPL. OUT を作成する為のリンク用ファイル

5. 関数の一覧

○初期化関数

ボードの初期化および、ライブラリーの初期化をおこなう。 A32X_141init

○A/D変換関数

A32X_ADsingle 指定チャンネルのA/D変換 複数チャンネルのA/D変換 A32X_ADmulti A32X_ADrepeats 指定チャンネルのA/D連続変換 A32X_ADrepeatm 複数チャンネルのA/D連続変換

A32X_ADstatus A/D連続変換終了確認

○D/A変換関数

A32X_DAsingle 指定チャンネルのD/A変換 A32X_DAmulti 複数チャンネルのD/A変換 指定チャンネルのD/A連続変換 A32X_DArepeats 複数チャンネルのD/A連続変換 A32X_DArepeatm D/A連続変換終了確認 A32X_DAstatus

○A/D&D/A同時変換

A32X_ADAsync 複数チャンネルのA/D&D/A連続連続変換

A32X_ADAstatus A/D&D/A連続変換終了確認

6. 関数詳細

関数名

ボードの初期化およびライブラリーの初期化

記述

int A32X_141init(int max, unsigned long base)

引き数

max ボード実装数

base 最初のベースアドレス

戻り値

-1 初期化失敗(パラメータ異常)

0 初期化正常終了

説明

ADSP324-141を初期化(D/Aの出力を0Vに設定)します。 またライブラリーの諸設定をおこないます。

ボード実装枚数の指定は、1~8が設定可能です。

ボードのベースアドレスは、1枚目のボードから20hステップで連続して設定し、最初のボードのベースアドレスを与えてください。

初期化構造体の説明は、第7章. 構造体の説明を参照してください。

```
関数名
```

指定チャネルの A/D 変換

記述

int A32X_ADsingle(int ch, float *data);

引き数

ch チャネル番号(0~[実装枚数*16-1])

*data A/D 変換結果

戻り値

-1 初期化失敗(パラメータ異常)

0 変換正常終了

説明

指定されたチャンネルをA/D変換します。

使用例

```
#include "a141bios.h"
```

float AD_BUF;

void main() {

A32X_ADsingle(0, AD_BUF);

}

```
関数名
```

複数チャネルの A/D 変換

記述

int A32X_ADmulti(int ch, float *data);

引き数

ch チャネル数

*data データ格納先ポインタ

戻り値

-1 初期化失敗(パラメータ異常)

0 変換正常終了

説明

複数チャンネルをA/D変換します。

使用例

#include "a141bios.h"

float AD_BUF[16];

void main() {

A32X_ADmulti(16, AD_BUF);

}

指定チャネルの A/D 連続変換

記述

int A32X_ADrepeats(float prod, int ch, unsigned long size, float *buff);

引き数

prod 取り込み周期(μ SEC) 20 μ SEC 以下は指定しないでください。

ch チャネル番号 size 取り込みサイズ *buff データ格納ポインタ

戻り値

-1 変換失敗(パラメータ異常)

0 変換正常終了

説明

指定されたチャンネルをA/D変換します。

変換データ数は、変換するデータサイズを指定します。

変換周期には、変換間隔をμ秒単位で指定します。

DSW104 は最初のボードからそれぞれ 1, 2, 3...8 の各位置を ON にしてくだい。

```
#include "a141bios.h"

#define AD_BUF[32];

void main() {
         A32X_ADrepeats(100, 0, 32, AD_BUF);
}
```

複数チャネルの A/D 連続変換

記述

int A32X_ADrepeatm(float prod, int ch, unsigned long size, float *buff);

引き数

prod 取り込み周期 (μ SEC) 20 μ SEC 以下は指定しないでください。

ch チャネル数(16, 32, 48...128)

size取り込みサイズ*buffデータ格納ポインタ

戻り値

-1 変換失敗(パラメータ異常)

0 変換正常終了

説明

複数チャンネルをA/D変換します。

変換データ数は、変換するデータサイズを指定します。

変換周期には、変換間隔をμ秒単位で指定します。

データの配列を下記に示します。

buff + 0 先頭チャンネルデータ

buff + 15 最終チャンネルのデータ

buff + 16 次のデータ

以下省略

DSW104 は最初のボードからそれぞれ 1, 2, 3...8 の各位置を ON にください。

```
#include "a141bios.h"

float AD_BUF[16*32];

void main() {
         A32X_ADrepeatm(100, 16, 32, AD_BUF);
}
```

```
関数名
```

A/D変換終了確認

```
記述
```

int A32X_ADstatus(void);

引き数

なし

戻り値

1変換中0変換終了

説明

A/D変換の終了を確認します。

この関数は、A32X_ADrepeats, A32X_ADrepeatm とともに使用します。

```
関数名
```

指定チャネルの D/A 変換

記述

int A32X_DAsingle(int ch, float data);

引き数

ch チャネル番号(0~[実装枚数*12-1])

data D/A 変換データ

戻り値

-1 変換失敗(パラメータ異常)

0 変換正常終了

説明

指定チャンネルのD/A変換を行います。

使用例

}

```
#include "a141bios.h"

float DA_BUF;

void main() {
    A32X_DAsingle(0, DA_BUF);
```

```
関数名
```

複数チャネルの D/A 変換

記述

int A32X_DAmulti(int ch, float *data);

引き数

ch チャネル数 *data データポインタ

戻り値

-1変換失敗(パラメータ異常)0変換正常終了

説明

複数チャンネルのD/A変換を行います。

指定チャンネルの D/A 連続変換

記述

int A32X_DArepeats(float prod, int ch, unsigned long size, float *buff);

引き数

prod 取り込み周期(μ SEC) ch チャンネル番号 size 取り込みサイズ *buff データ格納ポインタ

戻り値

-1変換失敗(パラメータ異常)0変換正常終了

説明

指定チャンネルのD/A変換を行います。 変換データ数は、変換するデータサイズを指定します。 変換周期には、変換間隔を μ 秒単位で指定します。 DSW104 は最初のボードからそれぞれ 1, 2, 3... 8 の各位置を ON にしてください。 取り込み周期が早すぎる場合は、取りこぼしが発生する場合があります。

複数チャンネルの D/A 連続変換

記述

int A32X_DArepeatm(float prod, int ch, unsigned long size, float *buff);

引き数

prod 取り込み周期(μ SEC)

ch チャンネル数(12, 24, 36...96)

size 取り込みサイズ

*buff データ格納ポインタ

戻り値

-1 変換失敗(パラメータ異常)

0 変換正常終了

説明

複数チャンネルをD/A変換します。

変換データ数は、変換するデータサイズを指定します。

変換周期には、変換間隔をμ秒単位で指定します。

データの配列を下記に示します。

buff + 0 先頭チャンネルデータ

buff + 11 最終チャンネルのデータ

buff + 12 次のデータ

以下省略

DSW104 は最初のボードからそれぞれ 1, 2, 3...8 の各位置を ON にください。 取り込み周期が早すぎる場合は、取りこぼしが発生する場合があります。

```
#include "a141bios.h"

float DA_BUF[12*32];

void main() {
         A32X_DArepeatm(100, 12, 32, DA_BUF);
}
```

```
関数名
```

D/A変換終了確認

```
記述
```

int A32X_DAstatus(void);

引き数

なし

戻り値

2 変換中

0 変換終了

説明

D/A変換の終了を確認します。

この関数は、A32X_DArepeats, A32X_DArepeatm とともに使用します。

```
関数名
```

A/D+D/A同期動作

```
記述
```

A32X_ADAsync(float prod, int unsigned long ad_size, float *ad_buff, int ad_chnl, unsigned long da_size, float *da_buff, int da_chnl);

引き数

同期周期 (μ SEC) prod ad_size A/D変換データサイズ A/D変換データ格納ポインタ ad_buff A/Dチャネル数(16,32,48...128) ad_chn1 da_size D/A変換データサイズ D/A変換データ格納ポインタ da_buff D/Aチャネル数(12,24,36...96) da_chn1

戻り値

- 1 変換失敗(パラメータ異常) 変換正常終了 0

説明

複数チャンネルをA/D&D/A変換します。 変換データ数は、変換するデータサイズを指定します。 変換周期には、変換間隔をμ砂単位で指定します。

データの配列を下記に示します。

ad_buff + 0 A/D先頭チャンネルデータ

ad buff + 15 A/D最終チャンネルのデータ

ad buff + 16 A/D次のデータ

以下省略

da_buff + 0 D/A先頭チャンネルデータ

da_buff + 11 D/A最終チャンネルのデータ

da_buff + 12 D/A次のデータ

以下省略

DSW104 は最初のボードからそれぞれ 1, 2, 3...8 の各位置を ON にしてください。 同期周期が早すぎる場合は、同期誤差が発生する場合があります。

```
"a141bios.h"
#include
float
               AD BUF[16*32];
float
               DA BUF[12*32];
void
       main() {
       A32X_ADAsync (100, 32, AD_BUF, 16, 32, DA_BUF, 12);
}
```

```
関数名
```

A/D+D/A同期変換終了確認

記述

int A32X_ADAstatus(void);

引き数

なし

戻り値

1変換中0変換終了

説明

A/D&D/A変換の終了を確認します。 この関数は、A32X_ADAsync とともに使用します。

7. 構造体の説明

構造体定義は typedf を用いて、<a141bios.h>の中で定義されています。

A/D&D/Aボードの定義

```
//ADボード配列構造体
typedef \ struct \{
     unsigned long AD[AD_CH_MAX],
                                          //ADチャンネル
                          DA[DA_CH_MAX],
                                          //DAチャンネル
                          AD_BUSY,
                                          //ADビジーフラグ
                          AD_CTRL,
                                          //AD制御レジスタ
                          EMPTY,
                                          //未使用
                          INT_RST;
                                          //割込み要因リセット
     }
          A141BD_PORT;
```

8. ボード制御ソフトを書く上での注意

ボード制御ソフトをユーザーサイドで独自に作る場合においての注意点を説明します。

1) ベクタの使用

割り込みを複数のボード上で使用する上で、ベクタ番号は重要な役割を持ちます。 ベクタ番号の設定は、DSW104で行うことができボード間で重複しないように設定します。

例)

- 1枚目のボード DSW104-1をON、他はOFF
- 2枚目のボード DSW104-2をON、他はOFF

このように設定しておくことにより、どのボードから割り込み要求がきたか知ることができるようになります。

知る方法は、ベースアドレスの下位16ビット全てが1のアドレス(nnffffH)番地を読むことによって行います。

()内の nn は、ボードのベースアドレスの上位8ビットの設定です。

このことからも解るとおり、割込み要求を出しているボードのDSW104のON位置のビットがOになります。

・本マニュアルの内容は製品の改良のため予告無しに 変更される事がありますので、ご了承下さい。

中部電機株式会社

〒440-0004 愛知県豊橋市忠興 3 丁目 2-8

TEL <0532>61-9566 FAX <0532>63-1081

URL : http://www.chubu-el.co.jp
E-mail : csg@chubu-el.co.jp

ADSP324-141 ソフトウェア・ ユーサ゛ース゛・ マニュアル

2000.6 第1版発行